跳至主要内容

飞 行 气 象


航空界通讯

第十八期 二零零二年十二月

新产品及服务发展
_____________________________________

天文台荣获全球第一

刘心怡

香港天文台成为全球第一批获颁发在国际航空服务方面的ISO 9001认证的气象服务单位之一。 

根据国际民用航空组织在二零零一年的建议,天文台为航空气象服务进行ISO认证。程序首先聘请「罗氏管理顾问公司」在二零零一年底提供所需的培训, 然后在二零零二年初建立一套品质管理的文件及系统。天文台继而委任 Bureau Veritas Quality International (BVQI) 为认证机构, 并在二零零二年年中进行内部审核,终于在今年十月成功完成整个认证的审核。

香港天文台台长林鸿鋆博士说﹕「天文台能够成为全球第一批获得 ISO认证的航空气象服务单位之一,实在是有赖同事们的合作和努力不懈,以及各航空用户对我们的服务所提出的建设性意见。」


图 1 : 天文台台长林鸿鋆博士(右三) 在航空界代表前接受BVQI 代表王建飞先生所颁发的ISO证书

首台「激光雷达」

李淑明

在二零零二年六月底的一个晚上,香港天文台在空中交通管制大楼的天台上顺利安装了一套激光雷达, 这是世界上第一台用于机场天气预警的激光雷达。


图 2 : 起重机将激光雷达的仪器外罩吊到空中交通管制大楼的天台

过往,天文台利用机场多普勒天气雷达来探测香港国际机场附近的风切变。机场多普勒天气雷达运用微波, 测量空气中水点的移动速度,以计算风向及风速资料,在雨天情况下能有效地探测风切变。新安装的激光雷达则利用红外线探测空气中尘粒 和微细粒子的移动,在无雨情况下最能发挥作用,即使肉眼看不到的天气现象也无所遁形。在激光雷达和机场多普勒天气雷达相辅相成的配合下, 探测风切变将更全面。


图 3: 天气雷达与激光雷达运作原理的分别

激光雷达位于香港国际机场两条平行的跑道之间,不断扫瞄机场的升降区,以探测可能影响飞机升降的气流, 覆盖范围远至跑道着陆区外3海里(5.6公里)。虽然激光雷达现正作试验性运行,到目前为止,它已探测到一些有趣的个案,例如由海风引起的风切变、 与热带气旋相关的风切变等。天文台将要收集一段时间的数据进行分析,以优化软件功能,计划激光雷达于二零零五年投入业务运作。


图 4: 激光雷达扫瞄范围示意图

为机师编撰的小册子

郑楚明

天文台与国际航空公司飞行员协会合作编撰了一本有关风切变及湍流的小册子,内容包括风切变及湍流的资料、 它们的成因和香港的风切变及湍流预警服务,以供飞机师参考。为方便向机师和其他有兴趣的读者广泛推介,天文台已将小册子放在互联网上供下载。


更多气象产品

李联安

航空公司用户现在可以透过航空气象资料发放系统选取更多的天气产品,其中包括:

以风羽图像显示的香港国际机场风向和风速资料

本港多个地区的风向和风速资料
亚太区、欧洲及非洲等地区的机场天气报告和预报

「欧洲卫星组织的地球同步卫星(Meteosat-5)」及「美国国家海洋及大气管理局的极地轨道气象卫星系列 (NOAA-12、14、15及16号)」的气象卫星图片。


图 5: 以风羽图像显示的香港国际机场风向和风速资料



图 6: 亚太区、欧洲及非洲等地区的机场天气报告和预报

The LIDAR is coming!

Captain Brian Greeves

(Hong Kong Airline Pilots Association)

(This article is reproduced from Flyleaf - Issue 42 with the permission from HKAOA/ HKALPA and Captain Brain Greeves)

「激光雷达的来临」- 转载自 Flyleaf - Issue 42 (只以英文发表)

Flyleaf is a magazine published by the Hong Kong Aircrew Officers Association (HKAOA) and the Hong Kong Airline Pilots Association (HKALPA).

In the following article published in August 2002, shortly after installation of the LIDAR, Captain Greeves gives us an introduction of the LIDAR and his perception of the equipment from a pilot's perspective.

In my last article (Flyleaf - Issue 41) on the Windshear and Turbulence Warning System, I promised to write something about the LIDAR.  I hoped that everyone had forgotten that, but unfortunately I received a note from the editor demanding a piece, so here goes!

First of all, LIDAR is not a new type of lie detection equipment. It stands for LIght Detection and Ranging and is a type of infrared Doppler radar.  It works in a similar way as a Doppler weather radar such as the TDWR, but uses an invisible (and safe) laser beam instead of microwaves.  Its range of detection is limited by both the line of sight and by the visibility, so whilst the TDWR works best with particles, particularly raindrops, the LIDAR works best in clear skies with very small particles (aerosols).


Figure 7 : Infrared Doppler radar (LIDAR) principle of operation

The wavelength of the LIDAR beam is 2 microns compared with 5 cm for the TDWR. This is not a limitation, because it has been bought to assist with the detection of windshear and turbulence in clear air conditions.

It will be sited on top of the ATC Complex and will have a range of about 4.5 nm. It will be able to observe the approach/departure track of all the runways i.e. out to 3nm beyond each runway threshold. This is one of the first installations of an operational LIDAR. Although the LIDAR has been around for sometime, it has previously only been used for research projects/purposes, including determining the wind characteristics around Chek Lap Kok prior to the opening of the Hong Kong International Airport. The problem with these research LIDARs was the scan rate was very slow (about once per 30 minutes) so they were no good for giving real-time information. This LIDAR will not have that limitation. It is still too early to know what its exact performance will be, but if it works, as planned, it will prove to be an excellent enhancement to the WTWS.

The LIDAR will be installed this summer and should be providing data towards the end of the year. Initially, the performance of the LIDAR will be assessed by the Hong Kong Observatory (HKO). It will then be gradually integrated (in 2003), first to assist the forecaster, with the eventual aim of it generating automatic alerts (2005 provisionally).


Figure 8: LIDAR wind velocities

The LIDAR is already producing some good data, including the above radar picture showing turbulence with around 5-10 knots loss on the approach to Runway 07. The TDWR (see display below) was taken slightly earlier, when an alert was being generated with a 10-15 knots loss. I know the LIDAR was correct, because I flew the approach at that time.


Figure 9: TDWR wind velocities

全球天气

马伟民

香港天文台获得世界气象组织委托,负责开发及管理两个涵盖全球天气资讯的实验网站,以鼓励各地传媒及公众使用 各国气象局的天气资料。

「世界天气资讯服务」网站提供各地城市的天气资料,第一阶段主要提供气候数据,已于去年十二月开始运作。 第二阶段加入了各地的城市天气预报,在二零零二年十二月正式开始投入服务。目前该网站已包含了超过600个城市的预报和800个城市的气候资料。 资料都是由各国气象局提供的,所以质素都有一定保证。市民如想进一步了解当地的天气情况,更可以透过网站内的连结,浏览有关气象局网站。


图 10: 「世界天气资讯服务」网站

网址: http://www.worldweather.org/

另一个网站 -「恶劣天气信息中心」则专责提供世界各地恶劣天气方面的资讯。这个网站初期提供西北太平洋地区各国气象局 发出的区内热带气旋预报和警告。最近网站的覆盖范围已扩展到西南太平洋地区(如澳洲、纽西兰、斐济等)。九月十一日强烈热带风暴黑格比横过南海时, 网站浏览数目超过四万次。


图 11: 「恶劣天气信息中心」网站

网址: http://severe.worldweather.org/


机场天气观测
_____________________________________

赤鱲角的烟霞

吕永康

最近城中的热门话题是烟霞导致香港能见度下降,有多处地方受影响,例如位于大屿山的东涌。


图 12: 二零零一年一月赤鱲角出现烟霞的情况,
照片是朝北面向青山拍摄。小图为天朗气清下的照片。

烟霞是指由空气中的微细尘埃或悬浮粒子所引起的能见度下降的情况。以上的照片比较在大屿山赤鱲角有烟霞出现和天朗气清时的景物。

让我们看看赤鱲角与烟霞相关的天气情况。天文台的天气观测员在赤鱲角每小时进行一次天气观测。图13赤鱲角的风分布图显示风向以来自东面为主。

虽然西风和西北风出现的时间比较少,但对比其他风向发生烟霞的机会则异常地高。图14可以清楚显示这个情况。图中表示在各个风向烟霞发生的时间百分比, 当风由西或西北面吹来,有十分之一机会出现烟霞。

图 13: 一九九七年四月至二零零二年三月赤鱲角风向的时间百分比。
图 14: 同期烟霞于赤鱲角各个风向出现的时间百分比。

 

云的网页

刘心怡、刘迪森

你有否留意天空上的云能够有千变万化的形状?对飞机师来说,云可以预示未来的天气。根据高度及形态云可以分类成几个家族, 以兹识别。如果你想知多一点香港常见的云,请参观天文台有关云的新网页:

http://www.weather.gov.hk/education/cloud/index.htm


悬球状云

袁仲升

以下相片显示一种名为悬球状云的特殊云类。悬球状云的底面有袋状凸出部份,它们间中在积雨云(即暴风雨云)出现时产生。


图 15: 照片在机场气象所于二零零二年十月十八日拍摄


航空气象小常识问答题

1.

飞机在以下那种天气较容易起飞?

(A) 冷天气

(B) 暖天气

(C) 冷暖天气都无分别

4.

蒲福氏风级最高级数是甚么?

(A) 8

(B) 10

(C) 12

2.

高湿度对飞机性能有什么影响?

(A) 飞机性能下降

(B)飞机性能上升

(C)无影响

5.

以下那种天气系统覆盖最大面积?

(A)龙卷风

(B)强烈的雷暴

(C)台风

3.

3.

甚么会引致下击暴流的形成?

(A)雷暴

(B)海风

(C)飞机的排气


答案


恶劣天气
_____________________________________

黑格比为机场制造麻烦

陈世倜

大风的时候,例如当热带气旋经过时,强风吹过大屿山后可以严重扰乱机场附近的气流。

左下图显示在二零零二年九月十一日下午,当强烈热带风暴黑格比掠过香港时由机场多普勒天气雷达所观测到的风速变化。黑格比当时位于香港西南偏南约 一百五十公里,并向广东西部移动(图17)。在东南烈风之中(由图16的粉红色像素代表),条纹状的较弱气流(在图中以虚线围着橙色像素的A至E地带) 与图中以A'至E'代表的大屿山几个山峰的位置互相对应。

当飞机经过这些风势时强时弱的地带,会遇上最高达每小时三十海里 (每小时五十六公里)的逆风变化。当天有超过二十多架飞机第一次降落都不成功,需要复飞,其中大部份报告遇到低空风切变。

图 16: 二零零二年九月十一日下午五时三十七分当强烈热带风暴黑格比掠过香港时,机场多普勒天气雷达所观测到的风速变化
图 17: 当日下午四时三十二分的卫星图片显示黑格比位于香港西南偏南约一百五十公里(接收自日本气象厅的同步气象卫星(GMS-5))

首次拍摄「海风引起的风切变」

陈世倜

海风是引起风切变的原因之一。随着机场安装了一套激光雷达,现在可以更容易探测到海风的出现。

图18 显示激光雷达观测到发生于二零零二年八月二十一日接近中午时份海风开始形成的情况,图中的绿色像素显示从西面移近的海风出现于自西向东跑道 降落区。这些绿色像素代表风吹向激光雷达,而棕色像素则代表风离激光雷达(盛行东风)。海风稳定地向东移动,在正午时份到达赤鱲角的西部(图19)。

机场附近自动气象站的观测证实了海风前进的过程。图20 显示接近中午时份,机场及附近范围普遍吹东至东南风。到正午十二时,机场西面的浮标气象站显示风向已经转为西北偏西(图 21),表示海风前沿已越过该气象站。就是这一刻,有一班由曼谷来港的飞机在刚着陆前飞越海风前沿,机师报告遇上显著的风切变。当日天文台在海风来临前已事先发出风切变预警。

图 18: 二零零二年八月二十一日上午十一时二十四分的激光雷达图片
图 19: 同日正午十二时的激光雷达图片
图 20: 二零零二年八月二十一日上午十一时二十四分机场附近的风速风向
图 21: 同日正午十二时机场附近的风速风向

Microburst and windshear in Hong Kong

Captain Chris Kempis (Hong Kong Airline Pilots Association)

(This article is reproduced from Flyleaf - Issue 42 with the permission from HKAOA/ HKALPA and Captain Chris Kempis)

「香港的微下击暴流及风切变」- 转载自 Flyleaf - Issue 42 (只以英文发表)

This discussion has been written in the wake of articles on the subject published in two Cathay Pacific magazines, namely Crews News and Kai Talk. Both articles contain useful, pertinent information and are worth taking the time to read.  Kai Talk also carries an article on the Virgin Atlantic windshear incident at Chek Lap Kok (CLK) last summer.  The following discussion is intended to supplement these publications.

Windshear and, more specifically, microbursts were the aviation safety buzzwords of the 1980s.  The period saw several microburst related accidents, with the Delta Airlines Flight191 L1011 crash on approach to Dallas Fort Worth in August 1985 being arguably the final catalyst to change.  Windshear (in the same manner as Controlled Flight Into Terrain [CFIT] is considered today) was declared aviation's no 1 accident cause and what followed was a concerted effort by regulators, research agencies, the airlines and the International Federation of Air Line Pilots Associations (IFALPA) to develop procedures and training in: a) windshear and microburst avoidance, and b) maximizing the chances of a successful recovery from these hazards.

As a result we now have in place procedures (mostly memory items) and, more recently, on-board equipment. As professional aviators we know these to be essential tools of our trade.

Microbursts are typically associated with extra-tropical or temperate climates, particularly where these occur over large land masses.  What is less expected is the presence of microburst type conditions in the tropical, maritime air mass that is typical in Hong Kong.  Yet, these do occur and considerable effort has been expended in achieving a better understanding of these phenomena.  The Hong Kong Observatory (HKO) and IFALPA have compiled a booklet titled "Windshear and Turbulence in Hong Kong," intended as guide for pilots operating into CLK.  The following is an excerpt explaining "terrain-induced windshear":

What is 'terrain-induced windshear'?
Hills disrupt the flow of air across them and hence may induce windshear and turbulence.  The Hong Kong International Airport (HKIA) is located to the north of the mountainous Lantau Island, the highest peak on which is above 900 m.  When winds of 15 knots or higher blow across the hills on Lantau from the east, southeast, south and southwest, windshear and turbulence may occur near the airport. Larger magnitude of windshear and turbulence is possible when the wind speed is over 30 knots.

While winds of 20 knots or higher come from the northwest through northeast sectors across the hills to the north of HKIA, windshear and turbulence may also occur near the airport, although much less frequently.

On windy occasions such as the approach of a tropical cyclone, air streams of high wind speed may emerge from mountain gaps.  Lying between these high-speed air streams are air streams of lower wind speed. Aircraft traversing through alternating high-speed and low-speed air streams may encounter headwind losses and gains at different locations along the approach and departure corridors. 

In particular, if an aircraft flies from a low-speed air stream to a high-speed air stream, it may experience a large headwind gain leading to a lift of the aircraft.  If the aircraft moves from a high-speed air stream to a low-speed air stream, it may experience a large headwind loss resulting in a sinking motion.  This sinking occurs irrespective of whether there is accompanying precipitation or not. 

Apart from windy situations, windshear may also occur over the airport in lighter wind conditions when the atmosphere is stable (e.g. presence of a low-level tempeature inversion). In fact, windshear has been known to occur when winds of less than 15 knots blow across the hills on Lantau Island in the spring months.

Due to the sporadic and transient characteristics of windshear, a wind speed loss/gain may not necessarily be followed/preceded by a wind speed gain/loss.  Some aircraft may experience windshear and/or turbulence, while others do not, although the weather conditions are broadly the same.
Windshear and turbulence are, on average, more significant on the southern runway because of the closeness to the hills of Lantau Island.
Terrain-induced windshear does not necessarily occur in rain.  As a matter of fact, many of the terrain-induced windshear reports received from aircraft flying into or out of HKIA are not associated with precipitation.
While terrain-induced windshear is not caused by a "conventional microburst", the headwind loss and the sink that it brings to an aircraft may be comparable to that of a "conventional" microburst.

A major tool used in researching the above mentioned phenomena is the Terminal Doppler Weather Radar (TDWR).  The primary role of this instrument is to detect local wind conditions that lead to windshear and microbursts and, as such, it forms an essential part of the Windshear and Turbulence Warning System (WTWS). (See Spring 2002 issue of The Flyleaf for detail on the WTWS).  The Kai Talk article by meteorologists from the HKO explains some of the operations of the TDWR as well as mountain wave flow and windshear.  Below is a typical TDWR display showing the "spokes" or high speed airstreams (blue) that flow out from gaps on Lantau during southerly wind conditions.  Notice the lower speed airstreams (green/dark green) that are interspersed between them:


Figure 22: 10:24 hrs UTC TDWR wind velocities
Note: Blue to green indicates varying wind speeds towards radar and colors yellow to red away from radar.

So, what have we learned from the past four years of operations at CLK? Crew and ATC awareness of the potential hazards have increased with operational exposure. The HKO is refining the calibration and algorithms for the TDWR. More importantly though, knowledge and training are the most effective tools and they tell us that avoidance is by far the best strategy. In fact, Flight Operations management has come out in print in both newsletters and NTCs with the clear message: Avoid! Do not take off or make/continue an approach if a microburst alert is in force (as broadcast on ATIS or transmitted by ATC). Should an un-forecast microburst be encountered, it will present itself as severe windshear. Follow SOPs and carry out the manoeuvre without hesitation and to the best of your ability. On board detection systems may or may not recognize the conditions as the systems generally only operate below 1500ft RA. (The FMGEC's did not detect windshear on the 2nd approach in the Virgin Atlantic incident). Finally, do not limit your awareness of this phenomenon to Hong Kong. Narita 16/34 is another example of an approach in our network that is affected by windshear. Pay close attention to METARs, ATIS, SIGMETs, Port Pages, ATC and PIREPs and form as accurate a mental picture as possible when planning your approach or departure. Then, as stated previously, follow SOPs and training.

For more information on microbursts as well as the windshear and turbulence detection equipment in use in Hong Kong, log on to the HKO Website at: http://www.weather.gov.hk/.



接触客户
_____________________________________

热带气旋简报会

刘心怡

为航空交通管制及香港机场管理局的人员作热身,迎接热带气旋季节的来临,天文台在二零零二年五月举办了五场简报会。 简报会主要介绍热带气旋带来的天气及风切变,参加简报会的总人数接近一百八十位。


图 23: 刘心怡正向航空交通管制及机场管理局的人员进行简报


图 24: 航空交通管制及机场管理局的人员积极参加讨论

浮标初露头角

天文台的李本滢在二零零二年八月二十二日接受传媒的采访(下图),介绍了在香港第一个建立的浮标气象站, 该气象站负责监测机场以西的天气情况。当日有超过十多个传媒机构派记者参与采访。



机场气象所
_____________________________________

定期演习

迅速应变

陈家强 (机电工程署)

二零零二年七月初的一个风和日丽的早上,机电工程署驻机场当值人员突然接到天文台的报告,指有一枝风桅受到严重破坏, 需要即时更换。机电工程署同事立即调动人手、车辆及工具,协助天文台在一小时内把备用风桅运到受影响的地点,并把桅竖起。在两个部门同事的努力合作 下,气象观测能迅速回复正常。



图 25: 机电署员工正赶紧把备用风桅竖起

其实上述并不是一个真实个案,它只是香港天文台和机电工程署合作举行的定期演习,目的是让两个部门的同事能熟习换桅程序, 以确保当有风桅真的受到破坏时,可以在最短时间内把风桅回复正常。机电工程署的注册安全主任亦在当日替是项工作进行评估,使所有同事能在安全的环境 下工作。

机电工程署自赤鱲角机场启用以来,为天文台航空气象设施的机械、电力和冷气系统提供一站式操作及维修服务。两个部门的同事一直合作无间,确保仪器能够顺利运作。

雷电交击

二零零二年八月二日,机场直接被雷电击中。当日黄昏,与位于南海北部的一个低压区有关的雷雨影响香港。该低压区于翌日发展为一热带低气压, 并命名为北冕。照片由袁仲升先生在机场气象所利用ISO-100底片、长曝光时间及F16光圈拍摄。



会议及探访
_____________________________________

参与更多国际事务

李本滢

随着天文台在航空气象工作方面获得更多的认同,在二零零二年的国际舞台上,天文台扮演了一个更重要的角色。 以下两位同事最近分别成为世界气象组织及国际民用航空组织属下工作小组的主席:

a) 高级科学主任刘心怡小姐成为世界气象组织航空气象委员会属下的航空气象培训、环境及新发展 (TREND) 工作小组中的联合主席;
b) 高级科学主任岑智明先生成为亚太区的世界区域预报系统 (WAFS) 过渡工作小组的主席。

民航处探访天文台


图 26:   

署理民航处处长罗祟文先生(右四)和他的同事在二零零二年十一月六日探访天文台,受到天文台台长林鸿鋆博士(前右五)热烈欢迎

拜访民航处及国泰航空公司

香港天文台「预报员应用气象学」课程的学员于二零零二年七月四日拜访了民航处及国泰航空公司,并聆听有关业务的简报。

图 27: 民航处同事向天文台学员介绍空中交通管制塔的运作 图 28: 国泰航空公司职员向天文台学员介绍航班的运作


中国气象局及韩国气象厅到访


图 29: 中国气象局代表团于二零零二年十二月探访天文台。 副局长李黄先生与天文台的李本滢及刘心怡于激光雷达前留影

图 30:  二零零二年十一月,韩国气象厅的代表Park Jun-hwan 及 Kim Dong-su先生 (左一及二) 于参观天文台期间与陈柏纬先生在机场气象站倾谈。 韩国气象厅此行是为了在航空气象服务上作技术交流,内容包括预报的验证和激光雷达的应用

民航总局空管局到访


图 31:  中国民用航空总局空中交通管理局(空管局)代表团在陈海鞠局长(前排右三)及气象处周建华处长(左二)带领下,于二零零二年十二月访问天文台并参加航空气象高层管理研讨会


人与事
_________________________________

研究助理的工作

黄伟鹏

在城市大学的计算数学系毕业后,我在机缘巧合之下进入了天文台的航空气象服务科当研究助理。不经不觉已在这岗位工作了一年 多。我主要的工作是负责开发和改进机场气象所的电脑程式, 让航空天气预报员即时得到跑道上的气象讯息。最初在这里工作很不习惯, 因为要面对新 环境及新事物,经过上司的循循善诱和同事们的热心帮助,我终于能慢慢适应下来。

这份工作对我来说, 觉得最难得的是能学以致用 - 在大学修读过的一些数学方法竟然能够应用在气象上, 蛮有趣噢!在这里不但令我有很多实习编写电脑程式的机会,更丰富了我对天气及航空气象的知识。 希望未来我能够在天文台作出更多的贡献!


图 32: 黄伟鹏在测试机场气象所的电脑程式

暑期实习

陈海华

今年的暑假很高兴能够到香港天文台当了两个多月的暑期实习工作,期间我体验到许多新鲜的事物。从前一直以为天文台只做 天气预报的工作,当上了暑期生后才知道他们的工作是那么多元化。

我的暑期工作是帮助编写电脑程式,以便进行风切变及湍流的纪录及研究。虽然在学校编写的程式比实习时要来得复杂,但就是少了那一份严谨。 在学校的功课可以有错误,大不了就是成绩表上少了一、两分。但工作上对应用的程式要求非常严格,一个错误就可以令用者大惑不解,引来一连串的问题。

实习期间,天文台安排了我们众暑期生结伴作一天旅行。那天很高兴能够亲身到大帽山参观,没想到大帽山顶上这座大型又「奇特」的建筑物原来 就是天文台的气象雷达站。另外,我们又在天文台总部见识到超级电脑和铯原子钟,真是大开眼界。

在天文台工作,使我获得许多宝贵的经验, 对我未来的工作有很大的帮助。毕业后能在天文台工作也是不错的选择!


图 33: 笔者(后左八)与众暑期生参观大帽山天文台气象雷达站


电话及传真号码
Telephone and Fax Numbers

查询飞行气象文件
Enquiry on flight documents

(852) 2910 6922

机场气象所主管
Officer-in-charge AMO


(852) 2910 6300
(852) 2922 5805

当值航空预报员
Duty Forecaster AMO

传真 Fax

(852)2910 6920
(852)2922 5806

(852) 2910 0080

打电话问天气
Dial-a-Weather

(852) 187 8200
(粤语)
(852) 187 8202
(普通话)
(852) 187 8066
(English)

查询资料电话系统
Telephone Information Enquiry System


(852) 2926 1133
天文台网页
Hong Kong Observatory Home Page

http://www.weather.gov.hk
http://www.hko.gov.hk/


航空气象服务网页
Web Page for Aviation Weather Services

http://www.weather.gov.hk/aviation
http://www.hko.gov.hk/aviation


是期编辑         苏志权
Editor this issue C.K. So

香港天文台:香港九龙弥敦道134A 电邮 Email:mailbox@hko.gov.hk

Hong Kong Observatory:134A Nathan Road, Kowloon, Hong Kong